Вся трудность заданий А) и Б) заключается лишь в том, на сколько хорошо учащиеся помнят неравенство Коши.
IV. На координатной плоскости изобразите множество точек (область), удовлетворяющих следующим условиям.
А)
Решение. Преобразуем каждое неравенство системы по отдельности:
.
С учётом вычислений данная система примет вид:
На координатной плоскости заштриховываем множества точек, удовлетворяющих каждому из неравенств системы:
Закрашенная часть – искомая область.
Б)
(данную конструкцию уместно предложить после изучения показательной функции).
Решение. Преобразуем каждое из неравенств системы по отдельности:
Тогда с учётом вычислений данная система примет вид:
.
На координатной плоскости заштриховываем множества точек, удовлетворяющих каждому из неравенств системы:
Закрашенная часть – искомая область.
Сложность заданий А) и Б) заключается лишь в том, на сколько правильно учащиеся могут решать неравенства с двумя переменными.
V. При всех значениях параметра решить уравнения.
А)
Решение. Для начала вычислим предложенный интеграл:
.
Тогда .
определенный интеграл задача
Решая данное уравнение относительно параметра а, имеем:
1. если a = – 1: – 3 = 0, сл., решений нет; если a = 1: получим линейное уравнение 2x – 3 = 0, сл., ;
2. если
2.1. если , то решений нет;
2.2. если
Произведя отбор, запишем ответ.
Ответ: при :
при : решений нет
при a = 1: .
Б).
Решение. Вычислим предложенные определённые интегралы:
;
.
С учётом полученных вычислений имеем:
Во избежание ошибок при решении данного задания, необходимо заранее вспомнить с учащимися основные свойства тригонометрических функций (особенно области значений синуса и косинуса), а также правила решения отдельных задач с параметрами (это касается и задания А). Добиться максимальной работоспособности учащихся на уроке можно лишь при постановке таких проблемных ситуаций, которые будут создавать у школьников стремление их разрешить. На мой взгляд, одной из таких ситуаций будет использование предложенных конструкций, которые и осуществят творческий подход при обучении математике.
Статьи по теме:
Сущность понятия творческие способности
Одним из ведущих психологов, занимающихся анализом творческих способностей был Б.М. Теплов. Способности рассматривались Б.М. Тепловым в плане индивидуально-психологических различий. Дифференциальный момент он ввел в само определение понятия: "Во-первых, под способностями разумеются индивидуаль ...
Результаты исследования и их обсуждение
Дифференциация обучения была организована при изучении темы «Основы цитологии» в курсе «Общая биология». В данном эксперименте участвовали классы 25 школы, 11 «а» класс – экспериментальный, 11 «б» - контрольный. В 11 «а» классе учатся 28 человек, в 11 «б» классе – 27 человек. Они собраны вместе, ка ...
Понятие, основные причины и формы ДЦП
Термин детский церебральный паралич впервые был введен Зигмундом Фрейдом в 1893 г. Детский церебральный паралич тяжелое заболевание головного мозга, проявляющееся в различных психомоторных нарушениях при ведущем двигательном дефекте. Термин детский церебральный паралич (ДЦП) обозначает группу двига ...