Вся трудность заданий А) и Б) заключается лишь в том, на сколько хорошо учащиеся помнят неравенство Коши.
IV. На координатной плоскости изобразите множество точек (область), удовлетворяющих следующим условиям.
А)
Решение. Преобразуем каждое неравенство системы по отдельности:
.
С учётом вычислений данная система примет вид:
На координатной плоскости заштриховываем множества точек, удовлетворяющих каждому из неравенств системы:
Закрашенная часть – искомая область.
Б)
(данную конструкцию уместно предложить после изучения показательной функции).
Решение. Преобразуем каждое из неравенств системы по отдельности:
Тогда с учётом вычислений данная система примет вид:
.
На координатной плоскости заштриховываем множества точек, удовлетворяющих каждому из неравенств системы:
Закрашенная часть – искомая область.
Сложность заданий А) и Б) заключается лишь в том, на сколько правильно учащиеся могут решать неравенства с двумя переменными.
V. При всех значениях параметра решить уравнения.
А)
Решение. Для начала вычислим предложенный интеграл:
.
Тогда .
определенный интеграл задача
Решая данное уравнение относительно параметра а, имеем:
1. если a = – 1: – 3 = 0, сл., решений нет; если a = 1: получим линейное уравнение 2x – 3 = 0, сл., ;
2. если
2.1. если , то решений нет;
2.2. если
Произведя отбор, запишем ответ.
Ответ: при :
при : решений нет
при a = 1: .
Б).
Решение. Вычислим предложенные определённые интегралы:
;
.
С учётом полученных вычислений имеем:
Во избежание ошибок при решении данного задания, необходимо заранее вспомнить с учащимися основные свойства тригонометрических функций (особенно области значений синуса и косинуса), а также правила решения отдельных задач с параметрами (это касается и задания А). Добиться максимальной работоспособности учащихся на уроке можно лишь при постановке таких проблемных ситуаций, которые будут создавать у школьников стремление их разрешить. На мой взгляд, одной из таких ситуаций будет использование предложенных конструкций, которые и осуществят творческий подход при обучении математике.
Статьи по теме:
Понятие отклоняющегося поведения
Общество всегда уделяет много внимания проблеме поведения людей, которое не соответствует общепринятым или официально установленным социальным нормам. В последние годы в связи с общесистемным кризисом нашего общества интерес к проблеме отклоняющегося поведения значительно возрос, что обусловило нео ...
Роль искусства в системе эстетического воспитания
дошкольников
Важность искусства в эстетическом воспитании не вызывает сомнения, так как оно является собственно его сутью. Особенность искусства как средства воспитания заключается в том, что в искусстве "сгущен, сконцентрирован творческий опыт человека, духовное богатство". Его содержание должно охва ...
Гендерная составляющая социальной политики в
современной России
Само понятие социальной политики непосредственно связано с понятием государства всеобщего благосостояния (социального государства). «Социально государство представляет собой такой тип общественного устройства, при котором государство гарантирует своим гражданам определенный уровень благосостояния». ...